The pointer reading v/s load graph for a spring balance is as given in the figure. The spring constant is ........ $ kg/cm$
$0.1$
$5 $
$0.3$
$1$
Draw a plots of mechanical energy, potential energy and kinetic energy versus displacement for different position of a motion of a block attached to a spring.
A block $(B)$ is attached to two unstretched springs $\mathrm{S} 1$ and $\mathrm{S} 2$ with spring constants $\mathrm{k}$ and $4 \mathrm{k}$, respectively (see figure $\mathrm{I}$ ). The other ends are attached to identical supports $M1$ and $M2$ not attached to the walls. The springs and supports have negligible mass. There is no friction anywhere. The block $\mathrm{B}$ is displaced towards wall $1$ by a small distance $\mathrm{x}$ (figure $II$) and released. The block returns and moves a maximum distance $\mathrm{y}$ towards wall $2$ . Displacements $\mathrm{x}$ and $\mathrm{y}$ are measured with respect to the equilibrium position of the block $B$. The ratio $\frac{y}{x}$ is Figure: $Image$
To simulate car accidents, auto manufacturers study the collisions of moving cars with mounted springs of different spring constants. Consider a typical simulation with a car of mass $1000\; kg$ moving with a speed $18.0\; km / h$ on a rough road having $\mu$ to be $0.5$ and colliding with a horizontally mounted spring of spring constant $6.25 \times 10^{3} \;N m ^{-1} .$ What is the maximum compression of the spring in $m$?
Mention the work done by spring force in cylic process.
A spring of force constant $k$ is cut into three equal pieces. If these three pieces are connected in parallel the force constant of the combination will be